Gia sư môn Toán » Học toán lớp 9 trên mạng

Cho f(x) là đa thức bậc bốn thỏa mãn f(1) = f(-1) và f(2) = f(-2). Chứng minh rằng f(x) = f(-x) với mọi x

Một bài toán dạng áp dụng tính chất nghiệm của đa thức được gia sư môn toán giải đáp và hướng dẫn cho các em học sinh lớp 9.

Cho f(x) là đa thức bậc bốn thỏa mãn f(1) = f(-1) và f(2) = f(-2). Chứng minh rằng f(x) = f(-x) với mọi x.

Lời giải

Đặt g(x) = f(x) – f(-x), thế thì g(x) là đa thức dạng: g(x) = ax^3 + bx^2 + cx + d. Mặt khác, ta có:

g(1) = f(1) – f(-1) = 0

g(-1) = f(-1) – f(1) = 0

g(2) = f(2) – f(-2) = 0

g(-2) = f(-2) – f(2) = 0

Như vậy g(x) là đa thức bậc không quá ba mà có bốn nghiệm khác nhau 1, -1, 2, -2 điều này là không thể. Vậy phải có a = 0; b = 0; c = 0; d = 0.

Hay f(x) = f(-x) với mọi x.

Twitter Delicious Facebook Digg Stumbleupon Wordpress Googlebuzz Myspace Gmail Newsvine Favorites More
You can leave a response.

Đóng góp ý kiến