Gia sư môn Toán » Luyện thi 9 lên 10

Chứng minh bốn điểm A; O; H; C nằm trên một đường tròn.

Dạng 5 : Chứng minh các điểm cùng thuộc một đường tròn:

BÀI TOÁN 6: Cho tam giác đường phân giác BN và tâm O của đường tròn nội tiếp trong tam giác. Từ A kẻ một tia vuông góc với tia BN, cắt BC tại H. Chứng minh bốn điểm A; O; H; C nằm trên một đường tròn.

Gợi ý: – Gọi I là giao điểm của AH và BN. Kẻ AP vuông góc với CO cắt AB tại P. M là giao điểm của OC và AB, K là giao điểm của OC và AP.

– Áp dụng tính chất giữa các đường (đường cao, đường trung trực, đường trung tuyến, đường phân giác, đường trung bình) trong tam giác.

– Kiến thức về tứ giác nội tiếp.

– Tính chất góc ngoài tam giác.

Twitter Delicious Facebook Digg Stumbleupon Wordpress Googlebuzz Myspace Gmail Newsvine Favorites More
You can leave a response.

Đóng góp ý kiến