Gia sư môn Toán » Học toán lớp 6 trên mạng

Lý thuyết về Đồng Dư trong chương trình Toán lớp 6

[Học Toán lớp 6 nâng cao] – Lý thuyết về Đồng Dư trong chương trình Toán lớp 6.

1. Định nghĩa về Đồng Dư:

Cho a,b là các số nguyên và n là số nguyên dương. Ta nói a đồng dư với b theo modun n và ký hiệu là a ≡ b có cùng số dư khi chia cho n.

Như vậy a ≡ b (mod n)  <=> (a – b) chia hết cho n.

Ví dụ: 23  3 – 4 (mod 4) hoặc 23  -1 (mod 4).

Nhận xét: Nếu a chia b dư r thì a  r (mod b).

2. Tính chất về Đồng dư: Với mọi a, b, c, n  thuộc Z và n > 0, ta có:

  • a  a (mod n) với mọi a
  • a  b(mod n) thì b  a(mod n)
  • a  b (mod n), b  c (mod n) thì a  c (mod n)
  • a  b (mod n) => a ± c  b ± c (mod n) Với mọi số nguyên c.
  • ac  bc (mod n)  và (c,n) = 1 thì a  b(mod n)
  • a  b (mod n) => ak  bk(mod n) với mọi k  1
  • (a + b)n  bn (mod a) ( a > 0)

BÀI TẬP VẬN DỤNG VỀ ĐỒNG DƯ

Bài 1: Chứng minh rằng: (22225555 + 55552222) chia hết cho  7.

Bài 2: Chứng minh rằng: A = (7.52n + 12.6n) chia hết cho 19.

Bài 3:  Tìm số dư khi chia 32000 cho 7.

Bài 4: Cho số A = 20122013. Tìm chữ số tận cùng của A.

Bài 5: Cho A = 20122013. Tìm hai chữ số tận cùng của A.

Bài 6: Chứng minh rằng: A = 19611962 + 19631964 + 19651966 + 2 chia hết cho 7

Bài 7: Chứng minh rằng: 22225555  + 55552222 chia hết cho 7

Bài 8: Tìm số dư của A = 776776 + 777777 + 778778 khi chia cho 3 và khi chia cho 5.

Bài 9: Chứng minh rằng A = 52n+1 + 2n+4  + 2n+1 chia hết cho 23 với n là số tự nhiên.

Mọi thông tin cần hỗ trợ vui lòng liên hệ Thầy Thích – 0919.281.916.

Twitter Delicious Facebook Digg Stumbleupon Wordpress Googlebuzz Myspace Gmail Newsvine Favorites More
You can leave a response.

Đóng góp ý kiến